
Topic 3: Range Query: Review, Segment Tree Hard Handout
CS 41100 - CP3 Competitive Programming III (Spring 2024) Purdue University
Instructor: Zhongtang Luo Date: January 30, 2024

Sample Problem: Movie Collection
Link: https://vjudge.net/problem/Gym-100729C

Sample Problem: Wine Factory (Hard Version)
Link: https://vjudge.net/problem/CodeForces-1919F2

Sample Problem: Painting the Fence
Link: https://vjudge.net/problem/Gym-101911E

Sample Problem: Editor
Link: https://vjudge.net/problem/CodeForces-1263E

Sample Problem: Paimon Segment Tree
Link: https://vjudge.net/problem/Gym-103470E

1

https://vjudge.net/problem/Gym-100729C
https://vjudge.net/problem/CodeForces-1919F2
https://vjudge.net/problem/Gym-101911E
https://vjudge.net/problem/CodeForces-1263E
https://vjudge.net/problem/Gym-103470E

Movie Collection
Mr. K. I. has a very large movie collection, organized in a big stack. He tracks the position of each movie by the number
of movies above it in the stack. Each movie is identified by a number on its box. When he watches a movie, he removes
it from the stack (keeping track of how many movies were above it) and then places it back on top after watching.

Since the stack of movies is so big, he needs to keep track of the position of each movie. It is sufficient to know
for each movie how many movies are placed above it, since, with this information, its position in the stack can be
calculated. Each movie is identified by a number printed on the movie box.

Your task is to implement a program which will keep track of the position of each movie. In particular, each time
Mr. K. I. removes a movie box from the stack, your program should print the number of movies that were placed above
it before it was removed.

Input
The first line contains an integer: the number of test cases, at most 100. For each test case:

• One line with two integers 𝑚 and 𝑟 (1 ≤ 𝑚, 𝑟 ≤ 100, 000): the number of movies in the stack and the number of
locate requests.

• One line with 𝑟 integers 𝑎1, … , 𝑎𝑟 (1 ≤ 𝑎𝑖 ≤ 𝑚), representing the IDs of movies Mr. K. I. wants to watch.

Initially, the stack contains movies labeled 1, 2, … , 𝑚 in increasing order, with movie 1 at the top.

Output
For each test case, output one line with 𝑟 integers. The 𝑖-th integer should give the number of movie boxes above the
box labeled 𝑎𝑖, immediately before it is removed from the stack.

Examples
Input

2
3 3
3 1 1
5 3
4 4 5

Output

2 1 0
3 0 4

Note
After each locate request 𝑎𝑖, the movie with label 𝑎𝑖 is placed on top of the stack.

Source
Northwestern Europe Regional Contest (NWERC) 2011

2

Wine Factory (Hard Version)
There are three arrays 𝑎, 𝑏 and 𝑐. 𝑎 and 𝑏 have length 𝑛 and 𝑐 has length 𝑛 − 1. Let 𝑊(𝑎, 𝑏, 𝑐) denote the liters of wine
created from the following process.

Create 𝑛 water towers. The 𝑖-th water tower initially has 𝑎𝑖 liters of water and has a wizard with power 𝑏𝑖 in front
of it. Furthermore, for each 1 ≤ 𝑖 ≤ 𝑛 − 1, there is a valve connecting water tower 𝑖 to 𝑖 + 1 with capacity 𝑐𝑖.

For each 𝑖 from 1 to 𝑛 in this order, the following happens:

1. The wizard in front of water tower 𝑖 removes at most 𝑏𝑖 liters of water from the tower and turns the removed
water into wine.

2. If 𝑖 ≠ 𝑛, at most 𝑐𝑖 liters of the remaining water left in water tower 𝑖 flows through the valve into water tower
𝑖 + 1.

There are 𝑞 updates. In each update, you will be given integers 𝑝, 𝑥, 𝑦 and 𝑧 and you will update 𝑎𝑝 ∶= 𝑥, 𝑏𝑝 ∶= 𝑦
and 𝑐𝑝 ∶= 𝑧. After each update, find the value of 𝑊(𝑎, 𝑏, 𝑐). Note that previous updates to arrays 𝑎, 𝑏 and 𝑐 persist
throughout future updates.

Input
The first line contains two integers 𝑛 and 𝑞 (2 ≤ 𝑛 ≤ 5 ⋅ 105, 1 ≤ 𝑞 ≤ 5 ⋅ 105) — the number of water towers and the
number of updates.

The second line contains 𝑛 integers 𝑎1, 𝑎2, … , 𝑎𝑛 (0 ≤ 𝑎𝑖 ≤ 109) — the number of liters of water in water tower 𝑖.
The third line contains 𝑛 integers 𝑏1, 𝑏2, … , 𝑏𝑛 (0 ≤ 𝑏𝑖 ≤ 109) — the power of the wizard in front of water tower 𝑖.
The fourth line contains 𝑛 − 1 integers 𝑐1, 𝑐2, … , 𝑐𝑛−1 (0 ≤ 𝑐𝑖 ≤ 1018) — the capacity of the pipe connecting water

tower 𝑖 to 𝑖 + 1.
Each of the next 𝑞 lines contains four integers 𝑝, 𝑥, 𝑦 and 𝑧 (1 ≤ 𝑝 ≤ 𝑛, 0 ≤ 𝑥, 𝑦 ≤ 109, 0 ≤ 𝑧 ≤ 1018) — the updates

done to arrays 𝑎, 𝑏 and 𝑐.
Note that 𝑐𝑛 does not exist, so the value of 𝑧 does not matter when 𝑝 = 𝑛.

Output
Print 𝑞 lines, each line containing a single integer representing 𝑊(𝑎, 𝑏, 𝑐) after each update.

Examples
Input

4 3
3 3 3 3
1 4 2 8
5 2 1
4 3 8 1000000000
2 5 1 1
3 0 0 0

Output

11
8
5

3

Input

5 5
10 3 8 9 2
3 4 10 8 1
6 5 9 2
5 4 9 1
1 1 1 1
2 7 4 8
4 1 1 1
1 8 3 3

Output

31
25
29
21
23

Note
The first update does not make any modifications to the arrays.

• When 𝑖 = 1, there are 3 liters of water in tower 1 and 1 liter of water is turned into wine. The remaining 2 liters
of water flow into tower 2.

• When 𝑖 = 2, there are 5 liters of water in tower 2 and 4 liters of water is turned into wine. The remaining 1 liter
of water flows into tower 3.

• When 𝑖 = 3, there are 4 liters of water in tower 3 and 2 liters of water is turned into wine. Even though there are
2 liters of water remaining, only 1 liter of water can flow into tower 4.

• When 𝑖 = 4, there are 4 liters of water in tower 4. All 4 liters of water are turned into wine.

Hence, 𝑊(𝑎, 𝑏, 𝑐) = 1 + 4 + 2 + 4 = 11 after the first update.
The second update modifies the arrays to 𝑎 = [3, 5, 3, 3], 𝑏 = [1, 1, 2, 8], and 𝑐 = [5, 1, 1].

• When 𝑖 = 1, there are 3 liters of water in tower 1 and 1 liter of water is turned into wine. The remaining 2 liters
of water flow into tower 2.

• When 𝑖 = 2, there are 7 liters of water in tower 2 and 1 liter of water is turned into wine. Even though there are
6 liters of water remaining, only 1 liter of water can flow to tower 3.

• When 𝑖 = 3, there are 4 liters of water in tower 3 and 2 liters of water is turned into wine. Even though there are
2 liters of water remaining, only 1 liter of water can flow into tower 4.

• When 𝑖 = 4, there are 4 liters of water in tower 4. All 4 liters of water are turned into wine.

Hence, 𝑊(𝑎, 𝑏, 𝑐) = 1 + 1 + 2 + 4 = 8 after the second update.
The third update modifies the arrays to 𝑎 = [3, 5, 0, 3], 𝑏 = [1, 1, 0, 8], and 𝑐 = [5, 1, 0].

• When 𝑖 = 1, there are 3 liters of water in tower 1 and 1 liter of water is turned into wine. The remaining 2 liters
of water flow into tower 2.

4

• When 𝑖 = 2, there are 7 liters of water in tower 2 and 1 liter of water is turned into wine. Even though there are
6 liters of water remaining, only 1 liter of water can flow to tower 3.

• When 𝑖 = 3, there is 1 liter of water in tower 3 and 0 liters of water is turned into wine. Even though there is 1
liter of water remaining, no water can flow to tower 4.

• When 𝑖 = 4, there are 3 liters of water in tower 4. All 3 liters of water are turned into wine.

Hence, 𝑊(𝑎, 𝑏, 𝑐) = 1 + 1 + 0 + 3 = 5 after the third update.

Source
Codeforces Hello 2024

5

Painting the Fence
There is a beautiful fence near Monocarp’s house. The fence consists of 𝑛 planks numbered from left to right. The 𝑖-th
plank has color 𝑎𝑖.

Monocarp’s father have decided to give his son 𝑚 orders. Each order is a color 𝑐𝑗. After each order Monocarp finds
leftmost and rightmost planks currently having color 𝑐𝑗 and repaints all planks between them into color 𝑐𝑗.

For example, if, at first, fence looked like (from left to right) [1, 2, 3, 1, 4, 1, 5, 6], then after fulfilling an order with
color 1 fence will look like [1, 1, 1, 1, 1, 1, 5, 6].

Assume that Monocarp fulfills all orders in the order they come, one by one.
Note that if current order is about color 𝑥 and there is no more than one plank in the fence having color 𝑥, then

Monocarp doesn’t repaint anything, so he can skip this order and skip to the next one.
Find out the color of each plank after Monocarp has done all the given orders.

Input
The first line contains one integer 𝑛 (1 ≤ 𝑛 ≤ 3 ⋅ 105) — the number of planks in the fence.

The second line contains 𝑛 space-separated integers 𝑎1, 𝑎2, … , 𝑎𝑛 (1 ≤ 𝑎𝑖 ≤ 3 ⋅ 105), where 𝑎𝑖 is the initial color of
the 𝑖-th plank.

The third line contains one integer 𝑚 (1 ≤ 𝑚 ≤ 3 ⋅ 105) — the number of orders.
The fourth line contains 𝑚 space-separated integers 𝑐1, 𝑐2, … , 𝑐𝑚 (1 ≤ 𝑐𝑗 ≤ 3 ⋅ 105), where 𝑐𝑗 is the color of the

𝑗-th order.

Output
Print 𝑛 space-separated integers — the colors of planks in the fence after processing all 𝑚 orders.

Examples
Input

4
1 2 1 2
2
2 1

Output

1 2 2 2

Input

8
7 1 7 1 23 9 23 1
4
23 4 7 1

Output

7 7 7 1 1 1 1 1

6

Note
In the first example initial appearance of the fence is [1, 2, 1, 2]. After the first order (color 2) fence will look like
[1, 2, 2, 2]. After the second order (color 1) appearance of the fence will not change.

In the second example initial appearance of the fence is [7, 1, 7, 1, 23, 9, 23, 1]. After the first order (color 23) the
fence will look like [7, 1, 7, 1, 23, 23, 23, 1]. After the second order (color 4) appearance of the fence will not change.
After the third order (color 7) the fence will look like [7, 7, 7, 1, 23, 23, 23, 1]. After the fourth order (color 1) the fence
will look like [7, 7, 7, 1, 1, 1, 1, 1].

Source
2018-2019 ACM-ICPC, NEERC, Southern Subregional Contest, Qualification Stage

7

Editor
The development of a text editor is a hard problem. You need to implement an extra module for brackets coloring in
text.

Your editor consists of a line with infinite length and cursor, which points to the current character. Please note that
it points to only one of the characters (and not between a pair of characters). Thus, it points to an index character. The
user can move the cursor left or right one position. If the cursor is already at the first (leftmost) position, then it does
not move left.

Initially, the cursor is in the first (leftmost) character.
Also, the user can write a letter or brackets (either (, or)) to the position that the cursor is currently pointing at. A

new character always overwrites the old value at that position.
Your editor must check, whether the current line is the correct text. Text is correct if the brackets in them

form the correct bracket sequence.
Formally, correct text (CT) must satisfy the following rules:

• any line without brackets is CT (the line can contain whitespaces);

• If the first character of the string — is (, the last — is), and all the rest form a CT, then the whole line is a CT;

• two consecutively written CT is also CT.

Examples of correct texts: hello(codeforces), round, ((i)(write))edi(tor)s, (me). Examples
of incorrect texts: hello)oops(, round), ((me).

The user uses special commands to work with your editor. Each command has its symbol, which must be written
to execute this command.

The correspondence of commands and characters is as follows:

• L — move the cursor one character to the left (remains in place if it already points to the first character);

• R — move the cursor one character to the right;

• any lowercase Latin letter or bracket ((or)) — write the entered character to the position where the cursor is
now.

For a complete understanding, take a look at the first example and its illustrations in the note below.
You are given a string containing the characters that the user entered. For the brackets coloring module’s work,

after each command you need to:

• check if the current text in the editor is a correct text;

• if it is, print the least number of colors that required, to color all brackets.

If two pairs of brackets are nested (the first in the second or vice versa), then these pairs of brackets should be
painted in different colors. If two pairs of brackets are not nested, then they can be painted in different or the same
colors. For example, for the bracket sequence ()(())()() the least number of colors is 2, and for the bracket
sequence (()(()())())(()) — is 3.

Write a program that prints the minimal number of colors after processing each command.

Input
The first line contains an integer 𝑛 (1 ≤ 𝑛 ≤ 106) — the number of commands.

The second line contains 𝑠 — a sequence of commands. The string 𝑠 consists of 𝑛 characters. It is guaranteed that
all characters in a string are valid commands.

8

Output
In a single line print 𝑛 integers, where the 𝑖-th number is:

• −1 if the line received after processing the first 𝑖 commands is not valid text,

• the minimal number of colors in the case of the correct text.

Examples

Note
In the first example, the text in the editor will take the following form:

1. (\\^

2. (\\ ^

3. (a\\ ^

4. (a\\ ^

5. (ab\\ ^

6. (ab\\ ^

7. (ab)\\ ^

8. (ab)\\ ^

9. (a))\\ ^

10. (a))\\ ^

11. (())\\ ^

Source
Codeforces Round 603 (Div. 2)

9

Paimon Segment Tree
Paimon just learns the persistent segment tree and decides to practice immediately. Therefore, Lumine gives her an
easy problem to start:

Given a sequence 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 of length 𝑛, Lumine will apply 𝑚 modifications to the sequence. In the 𝑖-th modifi-
cation, indicated by three integers 𝑙𝑖, 𝑟𝑖 (1 ≤ 𝑙𝑖 ≤ 𝑟𝑖 ≤ 𝑛) and 𝑥𝑖, Lumine will change 𝑎𝑘 to (𝑎𝑘 + 𝑥𝑖) for all 𝑙𝑖 ≤ 𝑘 ≤ 𝑟𝑖.

Let 𝑎𝑖,𝑡 be the value of 𝑎𝑖 just after the 𝑡-th operation. This way we can keep track of all historial versions of 𝑎𝑖.
Note that 𝑎𝑖,𝑡 might be the same as 𝑎𝑖,𝑡−1 if it hasn’t been modified in the 𝑡-th modification. For completeness we also
define 𝑎𝑖,0 as the initial value of 𝑎𝑖.

After all modifications have been applied, Lumine will give Paimon 𝑞 queries about the sum of squares among the
historical values. The 𝑘-th query is indicated by four integers 𝑙𝑘, 𝑟𝑘, 𝑥𝑘 and 𝑦𝑘 and requires Paimon to calculate

𝑟𝑘

∑
𝑖=𝑙𝑘

𝑦𝑘

∑
𝑗=𝑥𝑘

𝑎2
𝑖,𝑗

Please help Paimon compute the result for all queries. As the answer might be very large, please output the answer
modulo 109 + 7.

Input
There is only one test case in each test file.

The first line of the input contains three integers 𝑛, 𝑚 and 𝑞 (1 ≤ 𝑛, 𝑚, 𝑞 ≤ 5 × 104) indicating the length of the
sequence, the number of modifications and the number of queries.

The second line contains 𝑛 integers 𝑎1, 𝑎2, ⋯ , 𝑎𝑛 (|𝑎𝑖| < 109 + 7) indicating the initial sequence.
For the following 𝑚 lines, the 𝑖-th line contains three integers 𝑙𝑖, 𝑟𝑖 and 𝑥𝑖 (1 ≤ 𝑙𝑖 ≤ 𝑟𝑖 ≤ 𝑛, |𝑥𝑖| < 109 + 7) indicating

the 𝑖-th modification.
For the following 𝑞 lines, the 𝑖-th line contains four integers 𝑙𝑖, 𝑟𝑖, 𝑥𝑖 and 𝑦𝑖 (1 ≤ 𝑙𝑖 ≤ 𝑟𝑖 ≤ 𝑛, 0 ≤ 𝑥𝑖 ≤ 𝑦𝑖 ≤ 𝑚)

indicating the 𝑖-th query.

Output
For each query output one line containing one integer indicating the answer modulo 109 + 7.

Examples
Input

3 1 1
8 1 6
2 3 2
2 2 0 0

Output

1

Input

4 3 3
2 3 2 2
1 1 6
1 3 3
1 3 6

10

2 2 2 3
1 4 1 3
4 4 2 3

Output

180
825
8

Source
The 2021 ICPC Asia Nanjing Regional Contest (XXII Open Cup, Grand Prix of Nanjing)

11

